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We find that within the formalism of coadjoint orbits of the infinite dimensional Lie group the Noether procedure leads, for a 
special class of transformations, to the constant of motion given by the fundamental group one-cocycle S. Use is made of the 
simplified formula giving the symplectic action in terms orS and the Maurer-Cartan one-form. The area preserving diffeomorph- 
isms on the torus T 2 = S 1 ~ Sl constitute an algebra with central extension, given by the Floratos-Iliopoulos coeycle. We apply our 
general treatment based on the symplectic analysis of coadjoint orbits of Lie groups to write the symplectic action for this model 
and study its invariance. We find an interesting abelian symmetry structure of this non-linear problem. 

1. The Noether  theorem for symplectic actions 

Recent ly we have formula ted  a new s impl i f ied  
method  to produce  general geometr ic  act ions [ I - 4  ] 
in closed form using the symplect ic  structure natu-  
rally def ined on coadjo in t  orbits  [5,6] .  This has es- 
tabl ished a relat ion between the physical  act ions and 
the underlying geometry and group structure. The key 
observat ion made  by us is that  the act ion is given as 
a simple product  o f  the one-cocycle S(g )  of  the in- 
volved Lie group G with values in the ~* (a dual  
space to the Lie algebra if) and  the corresponding 
M a u r e r - C a r t a n  form ~z [ 7 ]. Hence the form o f  the 
action and its fundamenta l  proper t ies  are total ly de- 
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t e rmined  in terms o f  the basic group theoret ical  ob- 
jects  defined entirely by the underlying Lie group G 
having a non-tr ivial  central extension. This tech- 
nique will enable us here to make general observa- 
t ions concerning invariance and constants  of  mot ion  
associated to the act ions ob ta ined  in the above way. 

Let G be a Lie group which has a non-t r ivia l  cen- 
tral extension G. The elements of  the corresponding 
Lie algebra ~ are represented by pairs  (~, n) ,  where 

is a hami l ton ian  function on the symplect ic  mani-  
fold M, which under  a natural  h o m o m o r p h i s m  is 
being m a p p e d  into the Lie algebra ff o f  G, while n is 
a central element.  The dual vector  in if* is wri t ten as 
(B, c). For  the above dual pairs  we define the follow- 
ing bi l inear  form ( .  I" ) :  

( ( ' , c ) l ( ' , n )  ) = ( ' l ' ) o + c n ,  (1)  

where ( ,  I" ) o is a natural  b i l inear  form on fg. 
Let S be a one-cocycle on G taking values in f¢* 

and satisfying the cocycle condi t ion  
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(8s) (g~, g2) 

=gl o* S(g2) - S ( g ,  g2) +S(g~) = 0 ,  (2) 

as well as relations S( I) = 0 and S(g) = -go* S ( g -  t ) 
[7]. 

We now set the adjoint action o fg~G on the (~, n) 
pair to be 

Adg(~, n)= (go~, n+ 2 < S(g-~ ) l ~>o) , (3) 

where goa defines the standard adjoint transforma- 
tion on G. 

By invariance of the bilinear form we obtain from 
eq. (3) the corresponding coadjoint action of G 

Ad~(B, c) = (go* B+c2S(g), c ) ,  (4) 

where o* denotes the coadjoint action of G and 2 is a 
constant. This form of the coadjoint action for 
G = SDiffS ~ has been derived in ref. [ 6 ]. 

The adjoint representation of the Lie group in- 
duces the adjoint representation of its Lie algebra 

ad(¢t,.,)(~2, n2)= [(~l, nl), (~2, n2)] (5) 

with the commutator of the Lie algebra given by 

[ ( ~ ,  n , ) ,  (~2, rt2) ] = ({~l, ~2}, to(~l,  ~z) ) , (6) 

where {., • } is the Poisson bracket for smooth hamil- 
tonian functions on M. Here we use the fact that there 
is a natural homomorphism from the Lie algebra of 
the smooth functions on M equipped with the Pois- 
son bracket into the Lie algebra f¢, which is trans- 
forming {., • } into the usual Lie commutator for the 
vector fields in f~. This remark justifies the above use 
of the hamiltonian functions. 

The Lie algebra cocycle to(., • ) can be expressed in 
terms ofs(~),  the infinitesimal limit of S(g),  as 

to(~l, ~2)= --2<s(~l)1~2 >0. (7) 

Using invariance of the bilinear form <. l" > one 
can find the corresponding coadjoint action 

ad ~'¢,,)(B, c) = (ad~(B) + c2s((), 0 ) .  (8) 

As shown in ref. [7 ] the one-cocycle S(g) is a co- 
vector varying along the co-orbit according to 

d(S, 1/2)-ad(y,,,~)(S, 1 /4 ) ,  (9) 

where d is the exterior derivative along the co-orbit 

and q/= (y, my) is a Maurer-Cartan one-form on 
entering the Maurer-Cartan equation 

dq/= ½ [ q/, q/]. (I0) 

Recalling definition (6) we find for the central ele- 
ment of q/ 

my = ½d - lto(y, y). ( 11 ) 

According to our result from ref. [ 7 ] the corre- 
sponding action density in the symplectic framework 
appears as 

ac=-2c<(S ,  1/2) I q/> 

= - 2 c [  (Sly>o + ( 1 /Z)mr] .  (12) 

This action defines the symplectic two-form £2c by 
acting with the exterior derivative d on ot~: 

g2¢ --do~ = - ½2c< d(S, 1/2) I q/> 

= - ~2c < dSly>o . (13) 

We will now show that for g transforming under 
the left multiplication g ~ ( l + e ) g ,  with S ( g ) = S  i 
transforming according to the coadjoint action 

~,(S, 1/2) = (S f, l / 2 ) - ( S ' ,  1/2) 

=ad~,,,)(S, 1 /2 )=(ad~(S )+s (c ) ,O) ,  (14) 

as follows from (2), the action ac transforms as 

ot~ --. ore - ½2c<SIdE>o. (15) 

Accordingly, S is a constant of motion for this type 
of transformations, as follows from this adapted ver- 
sion of the Noether theorem. 

To prove it we first find the transformation 5,y= 
yf_yi of the Maurer-Cartan form corresponding to 
(14). Consider first 

* f < ad( : , , , r ) (S,  1/2)IX> = - < (S r, 1/4)1 [q/f, X] > 

= - < ( S  i, l / 2 )  l [q/i, X] > 

- < (S', 1/2)1 [d,q/, X] > 

- 46,(S, 1/4)1 [q/i, X] > "~O(e 2) ; (16) 

therefore 

<ad~r(S f, 1/4)IX> - < ad~i(S', 1/4)IX> 

=- -<(S  i, 1/4)1 Ice, q/, XI > 

+ ( ( S  i, 1/2)l [(E, n), [q/ i ,X]]> • (17) 
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Using relation (9) we can alternatively rewrite the 
left-hand side of  the above equation as 

( d ( S  f, 1 / 2 ) - d ( S  i, 1 / 2 ) IX)  

= - (ad~¢~,.) (S i, 1/2) + ad'~,,,) d (S ~, 1/2) IX) 

= ( ( S  i, 1/2)1 [d( t ,  n), X] ) 

- ( ( S ' ,  1/2)1 [~ ' ,  [(e, n ) , X  l ] )  . (18) 

Comparing eqs. (17) and (18) and making use of  
the Jacobi identity yields a transformation formula 

d,y={E,y}+d~, (19) 

which should be understood in a weak sense. Accord- 
ingly 12c defined in ( 13 ) transforms (for ~ depending 
on the co-orbit parameter t) as 

d,12c=-½2c((d, dSly)o+(dS[d,y)o) .  (20) 

Since the above derivative d must act in the direction 
perpendicular to t we obtain by commuting d with d, 

d,12c = - ½2c(dSI d~)o,  (21) 

which in consequence leads to the desired form for 
the variation of the action density 

6,ac = - ½2c(SIdE)o. (22) 

This concludes our proof. 
A particularly transparent example of this method 

is provided by the infinite dimensional Lie group 
G = D i f f S  t. In this case the schwartzian derivative 
S(F)  = F ' / F ' - 3 ( F " / F '  )2 is the one-cocycle, while 
the Maurer-Cartan one-form is given by y=dF/F'.  
We study in this case the reparametrization x ~ x +  
for xeS  ~. The corresponding variation of FeDi f fS  ~ 
is given as d,F= t(O/Ox)F(x). This variation corre- 
sponds to the action of the vector field tO~ on F(x) 
from the left and therefore S transforms according to 
(14) [ 7 ]. Our proof dictates then the transformation 
rule of  y as in (19), which in this case can easily be 
verified explicitly. The schwartzian derivative is 
therefore a constant of motion for the action density 
ot~ [2,81. 

2. The area preserving diffeomorphisms on the torus 

Here we apply the formalism of the first section to 
the area preserving diffeomorphisms on the torus 

T 2 = S l t ~ S  l and present the corresponding field 
theory. 

Let us first recall a well-known result from sym- 
plectic mechanics, namely that the condition for a 
field v to be a local hamiltonian field in two dimen- 
sions is div v= 0. This result specially holds for v hav- 
ing a physical interpretation as a velocity field for the 
flow of liquid of constant density [9,10]. Conse- 
quently the field v is determined by some hamilto- 
nian function g such that v= rot g and the vector field 
can be cast in the form 

0g 0 0g 0 
Zg ~- Ox I Ox 2 Ox 2 0 x  I --ldiO i (23) 

with g=g(&, x2) defined on the torus (0, 2zt) × (0, 
2rt). For the hamiltonian functions on the torus we 
introduce the Poisson structure through the natural 
Lie algebra homomorphism goLg satisfying 

[ Lg, Zf] = L{g,f) (24) 

with the Poisson bracket 

0g Of 0g Of =~'~0~g0jf. (25) 
{ g ' f } -  Oxl aXE ax2 axl 

Hence the Poisson bracket {g, f }  is chosen in such a 
way as to ensure it is being mapped by g-,Lg into the 
usual vector field Lie c o m m u t a t o r  of Lg and L~ 

For the periodic basis functions g(xt,  x2 )=  
exp [ i (n tx~ + nzx2 ) ] the vector field commutator  be- 
comes [ 11 ] 

[L,, L=] = - n × m  L,,+,,,+aini6,,+,,,,o, (26) 

where we included the non-trivial central term, which 
as shown in ref. [ 11 ] is admitted by this algebra, with 
a, and a2 being some constants. The area preserving 
algebra of  the torus and its trigonometric analogue 
have recently received a lot of  attention in the litera- 
ture [ 12 ]; here we will discuss the corresponding 
group structure in the symplectic setting. 

The algebra structure (26) is induced by two-di- 
mensional reparametrizations xtorrt(&, X2) and 
x2-,a2(Xl, x2) with the area preserving condition 

det (a~, 0 " 2  ) ={0.1, 0.2} = 1 (27) 
(x,, x2) 

which ensures that the Poisson structure (25) is 
preserved. 
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One can verify that the above determinant condi- 
tion imposes the following relations: 

0ok 0x; 0o, 0x~ 
(28) 

OXk- Oo~' OXk -- Oak 

for fixed i # k. 
The area preserving reparametrizations define the 

infinite dimensional Lie group G = S D i f f T  2 and in- 
duce the following adjoint and coadjoint transfor- 
mations: 

go¢=*(ot (x, ,  x2), o2(xt,  x~) ) , 

go* b=b(e,  (x, ,  x2), o2(xt, x2)) (29) 

by g~ SDiffT 2. 
To * in the algebra ~q--- Vect T 2 one associates as in 

the first section the pair (,, n) in ~ - the central ex- 
tension of Vect T z. The commutator structure on 
is given by eq. (6) with the Poisson bracket as in ( 25 ) 
and with to being the Floratos-Iliopoulos cocycle 

to(,,,)=- j j dx2a;O,,,. ( 3 0 )  

With the choice of the constant 2 to be one, (30) im- 
plies that s (the infinitesimal limit of the one-cocycle 
S) is s( *) =a;Oi¢. In this setting the infinitesimal 
coadjoint transformation (8) takes the form 

ad~¢,,)(B, c) = ({*, B}+ca;O;~, 0 ) .  (31) 

From (27) it follows that 

{do,, ~ }  + {or, do2) = 0 ,  (32) 

which can be rewritten as d iv(dt ; )=0,  Locally we 
therefore can find the one-form y satisfying d~= rot y 
or explicitly 

Oy - _ dot O__y_y = do2. (33 ) 
0o2 ' 0trt 

Accordingly, the one-form y is a hamiltonian for the 
vector field dot and plays an important role in our 
formalism. Let us namely consider an arbitrary co- 
vector Uo(xt, x2). Applying the adjoint transforma- 
tion we get U(ot, a2) =go* Uo. We have 

0U 0U 
dU= Oa---~ dot + ~a2 dez = {y, U}, (34) 

which follows from the definition of the Poisson 
bracket (25) and property (33). Hence y is a solu- 
tion to the basic equation [2,7 ] 

d(Adg Uo) = ady(Ad e Uo), (35) 

which leads us to consider y as a Maurer-Cartan form 
satisfying 

dy= ½{y, y} =da,  do2, (36) 

where we used again (25) and (33). A general solu- 
tion to the above equation is of the form 

y =  ½ (a, do2 -o'2 do" l ) + d p ,  (37) 

where the one-form dp expresses the fact that the 
Maurer-Cartan equation (36) specifies y only mod- 
ulo an exact form. It remains to be checked whether 
the above solution (37) satisfies the basic equation 
(33). It is convenient at this point to rewrite (33) as 

Omy=eoOmtTid6 j , (38) 

where &, denotes a derivative with respect to x" .  Ap- 
plying 0,, on both sides of  (37) and using the area 
preserving condition (27) we find that consistency 
requires 

0rap= - ½~oaiOmO j -  ½~,,nX" . (39) 

With this condition imposed on p the solution (37) 
to the Maurer-Cartan equation becomes fully com- 
patible with the interpretation of y as a hamiltonian 
for da i given in (33). 

We can now use the Maurer-Cartan form y to de- 
termine the one-cocycle S according to (9) which is 
explicitly, in this case, given by 

- * ( S ,  1 )  d(S, 1 ) -ad(y,r~y) 

= ({y, S}+aiOiy, 0 ) .  (40) 

We take the ansatz S= T(at, o2) +F(xt ,  x2). It fol- 
lows that because of eq. (34) we only have to solve 
for the x-dependent part of (40), which is 

{y, F (x )  } + a;O;y=O . (41) 

Using the identity s (* )=-a i ( J{* ,  xj) we find that 
F(x )  =a2xt -atx2.  The boundary condition 
S(x;=o~) =0 imposes T(a)=alo2-a2a~.  In conclu- 
sion the one-cocycle of SDiffT 2 is given by 

S(x-oa)  = T( a) + F(x )  

• -w-a t ( 0  2 - - X 2 )  - - a 2 ( o  t - - X  t ) , (42) 

and one easily verifies that S ( x ~ o )  indeed satisfies 
the cocycle condition (2). An alternative and inter- 
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esting derivation of the group one-cocycle directly 
from the Lie algebra cocycle co has been provided by 
Kirillov [ 6 ]. Starting with the general assumptions 
H'  (f¢) =0  and dim H2(f¢) = 1 about the homologies 
of the infinite dimensional Lie algebra f¢, Kirillov has 
found that the one-cocycle can be obtained through 
the formula 

o9(~, t/) -L(g)m(4 r/) = (SI [~, ~/] )o ,  (43) 

where L(g)og(~, t/) = og(go~, got/). 
We will illustrate Kirillov's method for f#= Vect T 2. 

Observe first that 

0~ oak 
(44) 

substituting (28) and integrating by parts we find 

to(l, t/) -L(g)to( ¢, t/) 

= I f do., do.2 ((-alx2 +a2xl){~,t/} 

o~ o~ ) 
-a, Oo---( t/-a2 ~ t~ 

= f f do., do.2{4 rl}S(x~o.) , (45) 

reproducing (42). 
Having determined both S and y we can now pro- 

ceed with the calculation of the action density given 
in formula (12). For this purpose we now find the 
central element my of the extended Maurer-Cartan 
form Y¢= (y, my). Inserting the Floratos-Iliopoulos 
cocycle (30) into the definition ( 11 ) we obtain 

Oy y+a2~_~yxEy) (46) dm,,=-½ f fdxidxz(ai-~x l 

Substituting 8y/S&= (Sy/Sak)Oo.k/OXi and using eqs. 
(33) and (28) we arrive at 

I- /" Ox2 Ox2 dm, : -  ½ j" j" <t,<, I_a,t, do.: +d<,, 

f_ 0x, 0x, ~l -a2kao.2 ~ +do,-~-ai jay. (47) 

Performing now an integration by parts and recalling 
that div(dtr) =0  as well as (33) we obtain 

my=½ f f dxl dX2(alx2-a2xl)(tTlda2-o.2dal) 

=½ f l dxl dx2 F(x)(tTtdo.2-o.2dtT,) . (48) 

We are now ready to calculate the action density (12) 
a=-((Sly)o+my), where we have omitted the 
central element c of the covector since it can always 
be absorbed in the constants ai. As the corresponding 
symplectic two-form £2 is only defined up to the exact 
form we obtain the following nontrivial contribution 
to the action density: 

a=-½ I f dXl dx2T(a)(alda2-a2do.l), (49) 

where we have used the fact that ( S l @ ) o =  
- 5 (  TI 1 (o.~ do.2 -o.2 do., ) ) up to the closed form, for 
dp defined in (37). 

The complete action can be written (modulo exact 
terms and constants in front) as 

~4= ~ f f dx, dxz(alo.2do.l+a2a2do.2), (50) 

where the first integral is over a curve on the orbit 
parametrized by t. 

Now let us study the effect of space reparametri- 
zations 

X, "-~X 1 "~- ~, ( X l ,  X2, t )  , 

X 2 ---~X 2 -~-~2(X, ,  X2, t) (51) 

on the action (50). The infinitesimal version of the 
determinant condition (27) will be satisfied by set- 
ting ei= -eo0je, with an arbitrary infinitesimal func- 
tion e(x,, xz, t). The action (50) varies as follows 
under (51 ): 

d~4=-2 f f f dXldX2T(o.)d~, (52) 

where we have used integration by parts and the de- 
terminant condition (27). In conclusion we find that 
the corresponding constant of motion is T(o.)= 
a,a2--azo.,. This is in total agreement with the gen- 
eral observations made in the previous section. T(o.) 
transforms as follows under the reparametrizations 
(51): 

0e 
¢T={~,  T}=a~ i)o~" (53) 
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Applying t ransformat ion rules (52)  and (53)  to the 
appropr ia te  correlat ion function we obtain a central 
extension of  the abel ian algebra for the commuta tors  

[ T,,,, T . ]  = a ' n  ~,, ,+.,o , (54) 

where T( a) = Y ,,, 7"= e x p ( i m . a ) .  
The invariance of  the geometric  act ions (12)  is re- 

lated to the isotropy group, which is a subgroup of  G, 
which leaves the one-cocycle S(g) invariant .  In the 
case of  G = SDiff  T 2 it is enough to consider  the 
t ransformat ions  which leave T(a) invariant .  The 
form of  these must  therefore be a~---,a~+f with the 
functions f satisfying a2f~ =a~f2. The de te rminant  
condi t ion  (27)  imposes on ft  the relat ion a~0f~/0a~ 
-a20f~/Oa2 = 0, which classically can be rewrit ten as 
a Poisson bracket  {T, f~ } = 0. The general solution to 
this constraint  must  therefore be f~ = f ( T ) .  Hence it 
is enough to consider  t ransformat ions  of  the type 
fl  = 2 T " ,  ~ =2(a2/al ) T n, with 2 being an infinitesi-  
mal t ime dependent  parameter .  A tedious but  
s traightforward calculation yields the following re- 
sult for the var ia t ion of  the action: 

d2 T,+2 (55)  
~ d = 2  f f I dx,  dx2 ( n + 2 ) a  ' , 

giving the conservat ion laws (d  / dt ) T" + 2 = 0 ( n = 0, 
1, 2 .... ). We find therefore an infini te number  of  con- 
stants of  mot ion  entering an abelian algebra with a 
central extension. For  a classical abelian algebra 
(without  the central charge),  the constants  of  mot ion  
would form a complete  set of  integrals of  mot ion  in 
involut ion and the dynamical  system under  consid- 
erat ion would be completely integrable - a s i tuat ion 
famil iar  from ( 1 + 1 ) dimensions.  

In conclusion, f ind that  the area preserving diffeo- 
morphism on the torus possesses a feature character-  
istic for the two-dimensional  models,  namely that  its 
central e lement  uniquely determines  the content  of  
the model  itself. One observes that  this is associated 
with the fundamenta l  proper ty  of  the torus: not  being 
simply connected. For  the area preserving diffeo- 
morphisms  on the plane SDiffR 2 [ 13] one finds 
namely easily that  the algebra does not  allow any cen- 
tral extension. 
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